A Singular Value Thresholding Algorithm for Matrix Completion
نویسندگان
چکیده
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {Xk,Y k} and at each step, mainly performs a soft-thresholding operation on the singular values of the matrix Y . There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {Xk} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On the theoretical side, we provide a convergence analysis showing that the sequence of iterates converges. On the practical side, we provide numerical examples in which 1, 000×1, 000 matrices are recovered in less than a minute on a modest desktop computer. We also demonstrate that our approach is amenable to very large scale problems by recovering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are connected with the recent literature on linearized Bregman iterations for l1 minimization, and we develop a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.
منابع مشابه
The detection of 11th of March 2011 Tohoku's TEC seismo-ionospheric anomalies using the Singular Value Thresholding (SVT) method
The Total Electron Content (TEC) measured by the Global Positioning System (GPS) is useful for registering the pre-earthquake ionospheric anomalies appearing before a large earthquake. In this paper the TEC value was predicted using the singular value thresholding (SVT) method. Also, the anomaly is detected utilizing this predicted value and the definition of the threshold value, leading to the...
متن کاملA Fast Implementation of Singular Value Thresholding Algorithm using Recycling Rank Revealing Randomized Singular Value Decomposition
In this paper, we present a fast implementation of the Singular Value Thresholding (SVT) algorithm for matrix completion. A rank-revealing randomized singular value decomposition (RSVD) algorithm is used to adaptively carry out partial singular value decomposition (SVD) to fast approximate the SVT operator given a desired, fixed precision. We extend the RSVD algorithm to a recycling rank reveal...
متن کاملFast Singular Value Thresholding without Singular Value Decomposition
Singular value thresholding (SVT) is a basic subroutine in many popular numerical schemes for solving nuclear norm minimization that arises from low-rank matrix recovery problems such as matrix completion. The conventional approach for SVT is first to find the singular value decomposition (SVD) and then to shrink the singular values. However, such an approach is time-consuming under some circum...
متن کاملIntelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion; Some Statistical and Algorithmic Theory for Adaptive-Impute
Over the past decade, various matrix completion algorithms have been developed. Thresholded singular value decomposition (SVD) is a popular technique in implementing many of them. A sizable number of studies have shown its theoretical and empirical excellence, but choosing the right threshold level still remains as a key empirical difficulty. This paper proposes a novel matrix completion algori...
متن کاملPost-Cartesian Calibrationless Parallel Imaging Reconstruction by Structured Low-Rank Matrix Completion
Introduction: Previously, we presented a new autocalibrating parallel imaging (acPI) method that does not explicitly require autocalibration lines and is based on low-rank matrix completion [7]. This time, we extend this technique to nonCartesian trajectories. Our method jointly autocalibrates and reconstructs the images, similarly to other joint estimation (coil & data) techniques [2-5]. Howev...
متن کاملAccelerated and Inexact Soft-Impute for Large-Scale Matrix and Tensor Completion
Matrix and tensor completion aim to recover a low-rank matrix / tensor from limited observations and have been commonly used in applications such as recommender systems and multi-relational data mining. A state-of-the-art matrix completion algorithm is Soft-Impute, which exploits the special “sparse plus low-rank” structure of the matrix iterates to allow efficient SVD in each iteration. Though...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2010